Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Experimental Study on Source Identification of Bus Floor's Vibration

2014-04-01
2014-01-0014
To find out the main excitation sources of a bus floor's vibration, modal analysis and spectral analysis were respectively performed in the paper. First we tested the vibration modal of the bus's floor under the full-load condition, and the first ten natural frequencies and vibration modes were obtained for the source identification of the bus floor's vibration. Second the vibration characteristic of the bus floor was measured in an on-road experiment. The acceleration sensors were arranged on the bus's floor and the possible excitation sources of the bus, which includes engine mounting system, driveline system, exhaust system, and wheels. Then the on-road experiment was carefully conducted on a highway under the four kinds of test condition: in-situ acceleration, uniform velocity (90km/h, 100km/h, 110km/h, 120km/h), uniform acceleration with top gear, and stall sliding condition with neutral gear.
Technical Paper

Experimental and Analytical Property Characterization of a Self-Damped Pneumatic Suspension System

2010-10-05
2010-01-1894
This study investigates the fundamental stiffness and damping properties of a self-damped pneumatic suspension system, based on both the experimental and analytical analyses. The pneumatic suspension system consists of a pneumatic cylinder and an accumulator that are connected by an orifice, where damping is realized by the gas flow resistance through the orifice. The nonlinear suspension system model is derived and also linearized for facilitating the properties characterization. An experimental setup is also developed for validating both the formulated nonlinear and linearized models. The comparisons between the measured data and simulation results demonstrate the validity of the models under the operating conditions considered. Two suspension property measures, namely equivalent stiffness coefficient and loss factor, are further formulated.
Technical Paper

Experimental and theoretical study on the swirl exhaust system for diesel engines

2000-06-12
2000-05-0162
On the basis of modular pulse converter (MPC) exhaust system the authors present a new swirl exhaust system. Structural parameters on the swirl exhaust system and MPC system for N8160ZC diesel engine were calculated by a mathematical optimum method, and the two systems were tested under the same engine operation for comparison. Experimental results show that the swirl exhaust system has a better engine performance under most of the operating conditions than MPC system, but worse under the low-speed and part-load conditions. In order to understand the mechanism of this swirl exhaust system well, a three-dimensional particle dynamic analyzer (3D-PDA) was utilized to measure the steady turbulent airflow in a swirl three-branched model. The computational fluid dynamics (CFD) code KIVA was modified to simulate the flows. Computational results are in good agreement with measuring ones and reveal the swirl flow behavior in the junction.
Technical Paper

Flexible Multibody Dynamics of Sewing Machine with Multi-Clearance Joints

2017-03-28
2017-01-0422
The sewing machine has been widely used in various aspects of life and it is essential to study its kinematic and dynamic characteristics. A dynamic model of flexible multi-link mechanism for sewing machine including joints with clearance is established to analysis its dynamic response in the present work. The configuration of the sewing machine mainly included five subsystems, feeding mechanism, needle bar mechanism, looper mechanism, shearing mechanism and adjusting mechanism. Since the sewing machine mainly consist of linkage mechanisms that are connected by revolute joints and translational joints, the existence of clearances in the joints and the flexibility of crankshafts and linkage are important factors that affect the dynamic performance. Even little clearance can lead to vibration and fatigue phenomena, lack of precision or even make overall behavior as random.
Technical Paper

Hierarchical Control Strategy of Predictive Energy Management for Hybrid Commercial Vehicle Based on ADAS Map

2023-04-11
2023-01-0543
Considering the change of vehicle future power demand in the process of energy distribution can improve the fuel saving effect of hybrid system. However, current studies are mostly based on historical information to predict the future power demand, where it is difficult to guarantee the accuracy of prediction. To tackle this problem, this paper combines hybrid energy management with predictive cruise control, proposing a hierarchical control strategy of predictive energy management (PEM) that includes two layers of algorithms for speed planning and energy distribution. In the interest of decreasing the energy consumed by power components and ensuring transportation timeliness, the upper-level introduces a predictive cruise control algorithm while considering vehicle weight and road slope, planning the future vehicle speed during long-distance driving.
Technical Paper

Impact Theory Based Total Cylinder Sampling System and its Application

2008-06-23
2008-01-1795
A novel non-destroy repeatable-use impact theory based total cylinder sampling system has been established. This system is mainly composed of a knocking body and a sampling valve. The knocking body impacts the sampling valve with certain velocity resulting in huge force to open the sampling valve and most of the in-cylinder gas has been dumped to one sampling bag for after-treatment. The feasibility and sampling response characteristics of this impact theory based total cylinder sampling system were investigated by engine bench testing. Within 0 to 35°CA ATDC (Crank Angle After Top Dead Center) sample timing 50 percent to 80 percent of in-cylinder mass would be sampled, which was a little less compared with the traditional system. The half decay period of pressure drop was 10 to 20 degrees crank angle within 0 to 60°CA ATDC sample timing, which was about 2-3 times of the traditional system.
Technical Paper

Improved Quasi-dimensional Spray Combustion Model in DI Engine with Detailed Chemistry

2008-06-23
2008-01-1604
In this paper, a quasi-dimensional multi-zone spray combustion model is developed to simulate the combustion and emission of direct injection engine fueled with dimethyl ether (DME). The analysis of the spray mixing process is based on a quasi-dimensional gas jet model which consists of integral continuity and momentum equations. The heterogeneous field of temperature and temporal distribution histories of fuel in the combustion chamber is considered by dividing the chamber into n-zones. The jet mixing models are used to determine the amount of fuel and entrained air in each zone available for combustion. The mass, energy and state equations are applied in each zone and the combustion process is controlled by chemical reactions which are calculated by adopting CHEMKIN code. The CHEMKIN libraries have been used to formulate a stiff chemical kinetic solver suitable for integration within the engine cycle simulation.
Technical Paper

Improvements on the Start Performance of Diesel Engine by Fuel Control Strategy Optimization and Heating Measures

2008-06-23
2008-01-1646
The incomplete combustion and misfire of diesel engine during starting result in unwanted white smoke. The histories of combustion and emission in different phases under different start conditions were studied in this paper. The optimization of the fuel injection control strategy under start conditions was performed. When the diesel engine is started under low temperature, the control strategy adapted to start the engine with a certain constant fuel mass injected per cycle, there may be misfire cycles in the initial period or in the transitional process, which is mainly caused by the mismatch between the fuel mass injected per cycle and the instantaneous engine speed. Therefore, an optimized control strategy was put forward, namely, the engine starts with high fuel mass injection in the first several cycles and then decreases step by step during the transitional period until it operates at idle condition. This strategy was validated to decrease significantly the misfire cycles.
Technical Paper

Interior Noise Prediction and Analysis of Heavy Commercial Vehicle Cab

2011-09-13
2011-01-2241
The basic theory of statistical energy analysis (SEA) is introduced, a commercial heavy duty truck cab is divided into 35 subsystems applying SEA method, and a three dimensional SEA model of the commercial heavy duty truck cab is created. Three basic parameters including modal density, damping loss factor and coupling loss factor are calculated with analytical and experimental methods. The modal density of the regular wall plate of the cab is calculated with traditional formula. The damping loss factors of the regular and complicated plates are obtained using analytical method and steady energy stream method. Meanwhile, the coupling loss factors of structure-structure, structure-sound cavity, and cavity-cavity are also calculated. Four kinds of excitations are in the SEA model, including sound radiation excitation of engine, engine mount vibration excitation, road excitation and wind excitation.
Technical Paper

Investigation of Cold-start Based on Cycle-by-Cycle Control Strategy in an EFI LPG Engine

2004-10-25
2004-01-3059
This paper presents an investigation of cold starts based on a cycle-by-cycle control strategy in an LPG EFI engine. Experiments were carried out in a four-stroke, water-cooled, single cylinder, 125cc SI engine with an EFI system. Effects of the first injection pulse width and the first combustion cycle on the characteristics of the cold-start were analyzed based on the histories of transient engine speeds and cylinder pressures. The study focuses on how to realize the controllable ignition cycle and the single-cycle and multi-cycle combustions were tested based on the single starting injection pulse width. Test results show that the first combustion cycle has an important effect on HC emission and combustion stability of following cycles at cold-start. The injection pulse width is the key factor determining the characteristics of an ignition cycle during the cold-start.
Technical Paper

Investigation of Transient Performance for Gasoline Engine with Electronic Throttle Control System

2008-06-23
2008-01-1782
The calibration of the electronic throttle unit and the pedal unit was made. Based on it, an electronic control system of electronic throttle was designed and installed on a 4G18 engine. Engine experiment was made especially for its transient working condition. Engine performance at transient working condition was investigated. The test results indicate that the optimum way of opening the throttle valve is to open the throttle valve to the target location at once, when 4G18 engine transit from 2000r/min to 3000r/min without load. And its optimum calibration for the electronic throttle control unit is made based on the test results. The control system, the experiment, the test results and the calibration were introduced in this paper.
Technical Paper

Matching Optimum for Low HC and CO Emissions at Warm-up Phase in an LPG EFI Small SI Engine

2005-10-24
2005-01-3897
Based on a 125cm3 single cylinder SI engine, the designated idle speed was controlled by adjusting of cycle ignition advance angle. By analyzing the effects of different idle speed and throttle open position on three way catalyst (TWC) light-off time and conversion efficiency of HC and CO emissions, combined with the corresponding total HC and CO emissions level, the optimum idle speed and throttle open position at engine's warm-up phase were found by the matching optimum. The present method for engine control strategy is helpful to optimize the warm-up phase emission levels in SI engine with LPG fuel.
Technical Paper

Mount Model Dependent on Amplitude and Frequency for Automotive Powertrain Mounting System

2017-03-28
2017-01-0405
Three constitutive models which capture the amplitude and frequency dependency of filled elastomers are implemented for the conventional engine mounts of automotive powertrain mounting system (PMS). Firstly, a multibody dynamic model of a light duty truck is proposed, which includes 6 degrees of freedom (DOFs) for the PMS. Secondly, Three constitutive models for filled elastomers are implemented for the engine mounts of the PMS, including: (1) Model 1: Kelvin-Voigt model; (2) Model 2: Fractional derivative Kelvin-Voigt model combined with Berg’s friction; (3) Model 3: Generalized elastic viscoelastic elastoplastic model. The nonlinear behaviors of dynamic stiffness and damping of the mounts are investigated. Thirdly, simulations of engine vibration dynamics are presented and compared with these models and the differences between common Kelvin-Voigt model and other constitutive models are observed and analyzed.
Technical Paper

Numerical and Experimental Investigation on Heat Exchange Performance for Heat Dissipation Module for Construction Vehicles

2017-03-28
2017-01-0624
In this work, a XD132 Road Roller from XCMG in China was employed as a research basis to study the heat exchange performance of the heat dissipation module under varied working conditions. The module in the XD132 consists of a cooling fan and three radiators. At first, the numerical investigation on the elementary units of radiators was performed to obtain Colburn j factor and Fanning friction f factor, which were used for the ε-NTU method to predict the radiator performance. The fan was numerically tested in a wind test tunnel to acquire the performance curve. The performance data from both investigations were transformed into the boundary conditions of the numerical vehicle model in a virtual tunnel. A field experiment was carried out to validate the simulation accuracy, and an entrance coefficient was proposed to discuss the performance regularity under four working conditions.
Technical Paper

Numerical and Experimental Research on Flow Resistance of Cool Medium from Heat Dissipation System for Construction Vehicles

2018-04-03
2018-01-0088
Construction vehicles own some inherent characteristics, such as low velocity, high power and following heavy heat flux et al. Aiming at decreasing flow resistance and managing airflow, a 39 ton single drum road roller from one of the biggest manufactures in China was employed as a research target to seek out the effect of air flow resistance on the performance of its heat dissipation system. For a start, a simplified 3D model of the road roller in a virtual wind tunnel was established with a commercial software, which was pre-processed in Gambit later. The radiators were set with heat exchanger boundary condition based on the analysis on the air-side elementary unit, as for the cooling fan, the experimental results in the wind tunnel were transformed into the corresponding boundary condition.
Technical Paper

Optimization Study on Coolant-flow for Heavy-duty Vehicle Diesel Engine by Experiment Study & Numerical Simulation

2007-08-05
2007-01-3628
Problems such as higher heat load in the diesel engine and the occurrence of crazes within the valve bridge of heavy-duty vehicle diesel engine should be solved, with the increase of the power density of heavy-duty vehicle diesel engine. In this paper, the heat load experiment of complete machine, temperature-measuring of bottom part of cylinder head and the three-dimension numerical simulation on coolant flow and heat transfer in the water jacket have been performed. The result shows that the main reasons of higher heat load of the engine are insufficiency of heat-sinking capability of the water-radiator and shortage of coolant flux; and the unsuitable flow field in water jacket in cylinder head, where only a little of the coolant can cool the bottom of cylinder head, is the main cause of cylinder head bottom over-heated and thermal crack in the valve-bridge region.
Technical Paper

Parallel Thermal Management System of the Water Medium Retarder

2018-04-03
2018-01-0777
The thermal management system of the water medium retarder using engine coolant (water and ethylene glycol) as transmission medium, omits oil-water heat exchanger in the structure. When the hydraulic retarder is operated, the valve is connected with the retarder and water pump, and then the engine coolant enters the working chamber. The kinetic energy of the vehicle is converted into internal energy of the coolant, and the heat is discharged to the external environment through the engine thermal management system. The braking torque of the water medium hydraulic retarder is determined by the water medium flow rate in the working chamber. The smaller the valve opening degree, the greater the braking torque and the faster the heating transmission fluid. Small valve opening is not conducive to the loss of heat. It will affect the normal working of the engine and hydraulic retarder.
Technical Paper

Parametric Investigation of Two-Stage Pilot Diesel Injection on the Combustion and Emissions of a Pilot Diesel Compression Ignition Natural Gas Engine at Low Load

2020-06-23
2020-01-5056
The purpose of this study is to evaluate the impact of two-stage pilot injection parameters on the combustion and emissions of pilot diesel compression ignition natural gas (CING) engine at low load. Experiments were performed using a diesel/natural gas dual-fuel engine, which was modified from a six-cylinder diesel engine. The effect of injection timing and injection pressure of two-stage pilot diesel were analyzed in order to reduce both the fuel consumption and total hydrocarbon (HC) and carbon monoxide (CO) emissions under low load conditions. The results indicate that, because injection timing can determine the degree of pilot diesel stratification, in-cylinder thermodynamic state, and the available mixing time prior to the combustion, the combustion process can be controlled and optimized through adjusting injection timing.
Technical Paper

Performance Analysis of Multi-Speed Torque Coupler for Hybrid Electric Vehicle

2016-04-05
2016-01-1149
A novel torque-coupling architecture for hybrid electric vehicles is proposed. The torque-coupling device is based on automated manual transmission (AMT), which is highly efficient and provides six gears for the engine and three gears for each motor to enable the engine and the motors to work at high-efficiency levels in most cases. The proposed power-shift AMT (P-AMT) does not have a hydraulic torque converter and wet clutches, which dampen the driveline shock. Thus, the drivability control of the P-AMT becomes a challenging issue. Accurate engine, motor model and transmission model have been built and the dynamic control of the gear shift process of PAMT in hybrid mode is simulated. The electric motors compensate for the traction loss during the gear shift of the engine.
Technical Paper

Piston Temperature Measurement Using Voltage Recorder and Numerical Simulation of the Temperature Field

2011-09-13
2011-01-2230
In this study, a measurement system is developed for obtaining continuous piston temperatures in a working engine by using a voltage recorder. The developed system has a very high accuracy with a measurement error within ± 1 °C. Since there is no relative movement between the measurement system and the piston, its reliability significantly increases. In order to test its accuracy and reliability, the developed measurement system is used to obtain the piston temperatures under various operating conditions with different air-fuel ratios, oil temperatures, and engine speeds. The measurement results are then used to calibrate the piston temperature field simulated by numerical analysis.
X